Optimal Boundary Control of Reaction-Diffusion PDEs via Weak Variations

نویسندگان

  • Scott J. Moura
  • Hosam K. Fathy
چکیده

This paper derives linear quadratic regulator (LQR) results for boundary controlled parabolic partial differential equations (PDEs) via weak-variations. Research on optimal control of PDEs has a rich 40-year history. This body of knowledge relies heavily on operator and semigroup theory. Our research distinguishes itself by deriving existing LQR results from a more accessible set of mathematics, namely weakvariational concepts. Ultimately, the LQR controller is computed from a Riccati PDE that must be derived for each PDE model under consideration. Nonetheless, a Riccati PDE is a significantly simpler object to solve than an operator Riccati equation, which characterizes most existing results. To this end, our research provides an elegant and accessible method for practicing engineers who study physical systems described by PDEs. Simulation examples, closed-loop stability analyses, comparisons to alternative control methods, and extensions to other models are also included.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Boundary Control & Estimation of Diffusion-Reaction PDEs

This paper considers the optimal control and optimal estimation problems for a class of linear parabolic diffusion-reaction partial differential equations (PDEs) with actuators and sensors at the boundaries. Diffusion-reaction PDEs with boundary actuation and sensing arise in a multitude of relevant physical systems (e.g. magneto-hydrodynamic flows, chemical reactors, and electrochemical conver...

متن کامل

Ergodic BSDEs and related PDEs with Neumann boundary conditions under weak dissipative assumptions

We study a class of ergodic BSDEs related to PDEs with Neumann boundary conditions. The randomness of the driver is given by a forward process under weakly dissipative assumptions with an invertible and bounded diffusion matrix. Furthermore, this forward process is reflected in a convex subset of R not necessarily bounded. We study the link of such EBSDEs with PDEs and we apply our results to a...

متن کامل

Boundary Control of Reaction-Diffusion PDEs on Balls in Spaces of Arbitrary Dimensions

Abstract. An explicit output-feedback boundary feedback law is introduced that stabilizes an unstable linear constant-coefficient reaction-diffusion equation on an n-ball (which in 2-D reduces to a disk and in 3-D reduces to a sphere) using only measurements from the boundary. The backstepping method is used to design both the control law and a boundary observer. To apply backstepping the syste...

متن کامل

Explicit Output-feedback Boundary Control of Reaction-diffusion Pdes on Arbitrary-dimensional Balls

This paper introduces an explicit output-feedback boundary feedback law that stabilizes an unstable linear constant-coefficient reaction-diffusion equation on an n-ball (which in 2-D reduces to a disk and in 3-D reduces to a sphere) using only measurements from the boundary. The backstepping method is used to design both the control law and a boundary observer. To apply backstepping the system ...

متن کامل

Numerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method

In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012